

iii

Deliverable Title

August 2021

WP4 – Big Data Management & AI

Services Layer

D4.1 | MATRYCS-

PROCESSING (1st technology

release)

iii

Disclaimer

The sole responsibility for the content of this publication lies with the authors. It does not necessarily

reflect the opinion of the European Union. Neither the EASME nor the European Commission is

responsible for any use that may be made of the information contained therein.

Copyright Message

This report, if not confidential, is licensed under a Creative Commons Attribution 4.0 International

License (CC BY 4.0); a copy is available here: https://creativecommons.org/licenses/by/4.0/. You are free

to share (copy and redistribute the material in any medium or format) and adapt (remix, transform, and

build upon the material for any purpose, even commercially) under the following terms: (i) attribution

(you must give appropriate credit, provide a link to the license, and indicate if changes were made; you

may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your

use); (ii) no additional restrictions (you may not apply legal terms or technological measures that legally

restrict others from doing anything the license permits).

The MATRYCS project has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement no.101000158

Modular Big Data Applications for Holistic

Energy Services in Buildings

https://creativecommons.org/licenses/by/4.0/

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

iv

D4.1 | MATRYCS-PROCESSING (1st technology release)

Grant Agreement Number 101000158 Acronym MATRYCS

Full Title Modular Big Data Applications for Holistic Energy Services in Buildings

Topic LC-SC3-B4E-6-2020 | Big data for buildings

Funding scheme H2020- IA: Innovation Action

Start Date October 2020 Duration 36

Project URL www.matrycs.eu

Project Coordinator ENG

Deliverable MATRYCS-PROCESSING (1st technology release)

Work Package WP4 – Big Data Management & AI Services Layer

Delivery Month (DoA) M11 Version 1.0

Actual Delivery Date 31/08/2021

Nature Other Dissemination Level Public

Lead Beneficiary HOLISTIC

Authors

Zoi Mylona, Nikolaos Sofias [HOLISTIC], Panagiotis Kapsalis, Haris

Doukas, Vangelis Marinakis, Konstantinos Alexakis [NTUA], Leandro

Lombardo, Marija Borisov [ENG], Zhiyu Pan [RWTH], Blaz Merela

[COMSENSUS], Daniele Antonucci [EURAC]

Quality Reviewer(s): Antonucci Daniele [EURAC], Aija Zučika [LEIF]

Keywords

ML/DL Models, Model Development, ML Suite, Data Feed Module,

Evaluation Framework, Model Serving, Serving Framework

Deployment, Data Processing, Data Management

Preface

MATRYCS focuses on addressing emerging challenges in big data management for buildings with an

open holistic solution for Business-to-Business platforms, able to give a competitive solution to

stakeholders operating in building sector and to open new market opportunities. MATRYCS Modular

Toolbox, will realise a holistic, state-of-the-art AI-empowered framework for decision-support models,

data analytics and visualisations for Digital Building Twins and real-life applications aiming to have

significant impact on the building sector and its lifecycle, as it will have the ability to be utilised in a wide

range of use cases under different perspectives:

 Monitoring and improvement of the energy performance of buildings - MATRYCS-PERFORMANCE

 Design facilitation and development of building infrastructure - MATRYCS-DESIGN

 Policy making support and policy impact assessment - MATRYCS-POLICY

 De-risking of investments in energy efficiency - MATRYCS-FUND

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

v

D4.1 | MATRYCS-PROCESSING (1st technology release)

Who We Are

N

o
Participant Name Short Name

Country

Code
Logo

1
ENGINEERING – INGEGNERIA INFORMATICA

SPA
ENG IT

2 NATIONAL TECHNICAL UNIVERSITY OF ATHENS NTUA GR

3 FUNDACION CARTIF CARTIF ES

4
RHEINISCH-WESTFAELISCHE TECHNISCHE

HOCHSCHULE AACHEN
RWTH DE

5 ACCADEMIA EUROPEA DI BOLZANO EURAC IT

6 HOLISTIC IKE HOLISTIC GR

7
COMSENSUS, KOMUNIKACIJE IN SENZORIKA,

DOO
COMSENSUS SL

8 BLAGOVNO TRGOVINSKI CENTER DD BTC SL

9
PRZEDSIEBIORSTWO ROBOT

ELEWACYJNYCHFASADA SP ZOO
FASADA PL

10 MIASTO GDYNIA GDYNIA PL

11
COOPERNICO - COOPERATIVA DE

DESENVOLVIMENTO SUSTENTAVEL CRL
COOPERNICO PT

12 ASM TERNI SPA ASM IT

13
VEOLIA SERVICIOS LECAM SOCIEDAD

ANONIMA UNIPERSONAL
VEOLIA ES

14
ICLEI EUROPEAN SECRETARIAT GMBH (ICLEI

EUROPASEKRETARIAT GMBH)
ICLEI DE

15
ENTE PUBLICO REGIONAL DE LA ENERGIA DE

CASTILLA Y LEON
EREN ES

16 VIDES INVESTICIJU FONDS SIA LEIF LV

17
COMITE EUROPEEN DE COORDINATION DE

L'HABITAT SOCIAL AISBL

HOUSING

EUROPE
BE

18 SEVEN, THE ENERGY EFFICIENCY CENTER Z.U. SEVEN CZ

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

vi

D4.1 | MATRYCS-PROCESSING (1st technology release)

Contents

 Introduction .. 11

1.1 Purpose of this document .. 11

1.2 Structure of the document ... 11

2 MATRYCS-PROCESSING Architecture ... 12

2.1 MATRYCS-PROCESSING Definition ... 12

2.2 MATRYCS-PROCESSING Layer Components.. 14

2.3 Connection with Big Data and IoT Reference Architecture ... 15

2.4 Connection with MATRYCS-GOVERNANCE Layer .. 16

2.5 Connection with MATRYCS-ANALYTICS Layer .. 17

3 Data Feed Module .. 21

3.1 High-Level Architecture of Data Feed Module .. 23

3.2 Migration from ScyllaDB to MongoDB .. 24

3.3 Data Feed Model Deployment Approach ... 25

4 Machine Learning Suite.. 29

5 Model Development Module ... 31

6 Model Serving Module ... 35

6.1 Model Serving Architecture ... 37

6.2 Model Serving technological components ... 38

6.3 Serving framework deployment approach ... 40

7 Evaluation Framework .. 44

7.1 Evaluation framework Architecture ... 45

7.2 Evaluation framework technological components ... 46

7.3 Evaluation framework deployment approach .. 48

8 MATRYCS-PROCESSING Integration on M11... 50

8.1 Connection with MATRYCS-GOVERNANCE Layer .. 50

8.2 Data Feed Module .. 50

8.2.1 LSP1 .. 50

8.2.2 LSP5 .. 52

8.3 Model Development / ML Suite / Models Shared Storage ... 55

8.4 Evaluation Module .. 57

8.4.1 LSP1 .. 57

8.4.2 LSP5 .. 58

8.5 Serving Framework ... 58

8.6 Connection to MATRYCS-ANALYTICS Layer .. 62

9 Future activities .. 63

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

vii

D4.1 | MATRYCS-PROCESSING (1st technology release)

Figures

Figure 1: MATRYCS PROCESSING High Level Architecture ... 12

Figure 2: MATRYCS Low Level Architecture ... 13

Figure 3: BDVC for MATRYCS Framework .. 15

Figure 4: Data Feed Connection with MATRYCS-GOVERNANCE .. 16

Figure 5: Serving Framework connection with MATRYCS-GOVERNANCE 17

Figure 6: MATRYCS Analytics Connection with Serving Framework .. 19

Figure 7: Connection of MATRYCS Analytics to the Reasoning Engine ... 20

Figure 8: Data Feed Component Architecture ... 23

Figure 9: Migration from ScyllaDB to MongoDB .. 24

Figure 10: ML Suite Starting Phase .. 29

Figure 11: Model Development Module high level Architecture .. 31

Figure 12: Separate AWS Account containing Module’s components .. 32

Figure 13: Terraform provisioning code of EC2 .. 33

Figure 14: Model Development Module JupyterHub ... 33

Figure 15: Pipeline option that enables usage of the Shared Models Storage 34

Figure 16: MLOps process – Model serving ... 35

Figure 17: MATRYCS conceptual architecture - Serving Module .. 37

Figure 18: Serving module conceptual architecture .. 38

Figure 19: Serving framework ML models repository (Yatai Web UI) .. 39

Figure 20: Swagger REST API .. 40

Figure 21: Docker running containers.. 43

Figure 22: MLOps process – Model evaluation ... 44

Figure 23: MATRYCS conceptual architecture - Evaluation framework ... 45

Figure 24: Evaluation framework architecture ... 46

Figure 25: Jupyter Notebook with TensorFlow, Keras, TensorBoard .. 47

Figure 26: ML models staging area .. 48

Figure 27: Data Importer procedures for BTC Tower of LSP1... 51

Figure 28: Data Importer procedures for LSP5 Solar plants .. 52

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

viii

D4.1 | MATRYCS-PROCESSING (1st technology release)

Figure 29: User’s initial interaction with Module .. 55

Figure 30: Handing off the data to the local storage .. 56

Figure 31: LSP1 Evaluation phase... 57

Figure 32: Evaluation of the selected ML model for LSP5 ... 58

Figure 33: ML model to be served for LSP1 ... 59

Figure 34: Swagger API to access evaluated models from LSP1 served with BentoML 60

Figure 35: Example of prediction service used from BentoML’s Swagger REST API for LSP1 .. 60

Figure 36: ML models bundle to be served for LSP1 .. 61

Figure 37: Swagger API to access evaluated models from LSP5 served with BentoML 62

Figure 38: Example of prediction service used from BentoML’s Swagger REST API for LSP5 .. 62

Tables

Table 1: Data Handler REST API call example (LSP1) ... 22

Table 2: Data Handler REST API call example (LSP5) ... 22

Table 3: Python Script for migrating data from ScyllaDB to MongoDB .. 24

Table 4: Data Feed Module Docker compose ... 25

Table 5: Provisioning Command .. 33

Table 6: Example of Docker Compose YAML file for BentoML services .. 41

Table 7: GroupBy query REST API call for LSP1 ... 51

Table 8: Feature selection REST API call for LSP1 data ... 52

Table 9: Selection query REST API call for LSP5 .. 53

Table 10: GroupBy query REST API call for LSP5 .. 53

Table 11: Feature selection REST API call for LSP5... 54

Table 12: Loading LSP1 data from the Data Feed Module .. 55

Table 13: Data Transformation for the provided pipeline ... 56

Table 14: Running the pipeline for LSP1 timeseries analysis .. 56

Table 15: LSP1 training metadata.. 56

Table 16: Basic BentoML command to serve the ML model in production mode 59

Table 17: Basic BentoML command to serve the bundle of ML Models in production mode . 61

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

ix

D4.1 | MATRYCS-PROCESSING (1st technology release)

Abbreviation and Acronyms

Acronym Description

AI Artificial Intelligence
ANN Artificial Neural Networks

AWS Amazon Web Services

CSV Comma-Separated values

DAG Directed Acyclic Graphs

DB Database

DL Deep Learning

ECM Energy Conservation Measure

EPC Energy Performance Contracting

IoT Internet of Things

JSON JavaScript Object notation

LSP Large Scale Pilot

ML Machine Learning

MLOps Machine Learning Operations

REST Representational state transfer

SQL Structured Query Language

VM Virtual Machine

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

x

D4.1 | MATRYCS-PROCESSING (1st technology release)

Executive Summary

The D4.1 - MATRYCS-PROCESSING (1st technology release) provides a description of the first version of

the Big Data Management & Services Layer (MATRYCS-PROCESSING) according with the MATRYCS high

level reference architecture defined in the deliverable D2.3 - MATRYCS Reference Architecture for

Buildings Data v1.0.

The 1st technology release is mainly focused to the preliminary identification and evaluation of the

envisaged technologies solutions for the MATRYCS-PROCESSING layer with limited data and in a

constraint scenario and reports the activities done until M11 in order to provide a first complete release

of the MATRYCS-PROCESSING layer under WP4-Big Data Management & AI Services layer and in

particular Task 4.1 - Data Validation and ML / DL Models Definition, Task 4.2 - Models Training, and Task

4.3 - Model Evaluation and Serving Framework.

This document presents an overview of the conceptual architecture of MATRYCS-PROCESSING with a

general description of its main components. Furthermore, the connection of MATRYCS-PROCESSING

with the MATRYCS-GOVERNANCE layer and the MATRYCS-ANALYTICS layer, and the connection with

the MATRYCS Reference Architecture is demonstrated. Finally, the MATRYCS-PROCESSING data flow,

components and processes are demonstrated through the LSP1 (BTC) and LSP5 (COOPERNICO) in order

to showcase the implementation details and preliminary information on deployment methods of the

MATRYCS-PROCESSING modules is provided.

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

11

D4.1 | MATRYCS-PROCESSING (1st technology release)

 Introduction

1.1 Purpose of this document

The purpose of D4.1-MATRYCS-PROCESSING (1st technology release) is to report the implementation of

the first technology release of the Big Data Management & AI Services Layer (MATRYCS-PROCESSING).

In this regard, this deliverable reports the activities and outcome carried out in Big Data Management

and AI Services Layer (MATRYCS-PROCESSING) focusing on the preliminary evaluation of the envisaged

technologies and highlighting the conceptual architecture MATRYCS-PROCESSING layer with the

interdependencies of the different components, the technological solutions, the interaction between

modules implementation aspects and deployment approaches are analysed and evaluated. Finally, the

MATRYCS–PROCESSING components and processes are demonstrated for LSP1 (BTC) and LSP5

(COOPERNICO) datasets.

1.2 Structure of the document

The D4.1-MATRYCS-PROCESSING (1st technology release) is organized as follows:

 In section 1, the purpose of the document and related structure is presented.

 In section 2, the overall MATRYCS-PROCESSING layer architecture and a general description of its

main components is demonstrated.

Sections 3, 4, 5, 6 and 7 describe in detail the MATRYCS-PROCESSING main components architecture,

development, and their interconnections. Specifically:

 In section 3, the Data Feed Module the output of T4.1-Data Validation and ML/DL Models definition

is presented.

 In section 4, the Machine Learning Suite, one of the outputs of T4.2-Models Training is presented.

 In section 5, the Model Development Module one of the outputs of T4.2-Models Training is

presented.

 In section 6, the Model Serving Module one of the outputs of T4.3-Model Evaluation and Serving

Framework is demonstrated.

 In section 7, the Evaluation Framework is presented, which is one of the outputs of T4.3-Model

Evaluation and Serving Framework.

There is a dedicated section for MATRYCS-PROCESSING demonstration:

 In section 8, the MATRYCS-PROCESSING layer and its building blocks are demonstrated for LSP1

(BTC) and LSP5 (COOPERNICO).

 Finally, section 9 outlines the upcoming activities to be undertaken in order to proceed with a more

advanced development of the MATRYCS-PROCESSING layer.

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

12

D4.1 | MATRYCS-PROCESSING (1st technology release)

2 MATRYCS-PROCESSING Architecture
MATRYCS-PROCESSING architecture contains all the components that can provide intelligence and

quick adaptation over stored data. The main components as illustrated below (Figure 1) and they are

the Data Feed Module, the Model Development Module, the Model Evaluation Module, the Models

Shared Storage, the ML Suite, and the Model Serving Framework.

Figure 1: MATRYCS PROCESSING High Level Architecture

2.1 MATRYCS-PROCESSING Definition

The MATRYCS-PROCESSING layer envisions to get all the intelligence components of the MATRYCS

solution together and encapsulate them into a stand-alone library of reusable ML and DL models.

MATRYCS aims to make these models available, in order to promote and facilitate quick adaptation

along different contexts.

The standard-based data modelling and processing methods devised in WP4, will contribute to the

definition of highly replicable and usable analytics building services.

MATRYCS-PROCESSING is responsible for a series of critical issues, which focus on:

 retrieving the data from storage

 transforming properly raw data

 the deployment of ML models (ANN, classifiers, knowledge representation and reasoning etc.)

 using state-of-the-art tools and libraries

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

13

D4.1 | MATRYCS-PROCESSING (1st technology release)

 developing models based on the underlying data,

 training the models according to the LSPs’ needs and

 feeding models with both batch and streaming data coming from the Query Engine and the Data

Streaming Module respectively.

The MATRYCS-PROCESSING layer is a composition of four modules:

 Data Feed Module,

 ML Suite,

 Model Development Module, and

 Model Serving Module.

In Figure 2 the MATRYCS-PROCESSING low level architecture is demonstrated. Specifically, the data are

inserted on MATRYCS-PROCESSING layer through Data Feed Module, which receives them from

MATRYCS Staging Area and processes them. In the next step, the Model Development Model receives

the transformed data from the Data Feed Module REST Services for starting the training of ML/DL

models. After training, the output models are stored to Models Shared Storage where the Model

Evaluation Module receives them for evaluation. Finally, the evaluated ML/DL models are exposed to

MATRYCS-ANALYTICS layer through Serving Framework.

Figure 2: MATRYCS Low Level Architecture

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

14

D4.1 | MATRYCS-PROCESSING (1st technology release)

2.2 MATRYCS-PROCESSING Layer Components

The MATRYCS-PROCESSING Layer includes components of the MATRYCS solution in order to provide a

library of reusable AI-based ML/DL models, which can be quickly adaptable and reusable along different

contexts. The included functional components are briefly described below:

 Data Feed Module: This module’s role is to retrieve the underlying data from the storage, perform

the needed transformations and finally pass the properly transformed data to the AI models. The

models cannot operate with the raw data, in the format they are stored. Contrariwise, each model

requires the data to have a specific format in order to be able to handle them. Consequently, this

stage is mandatory. An example of a transformation after interacting with the query execution

engine, is the handling of missing values, the normalization of them if needed or the selection of

the right features. Once this step is completed, the properly transformed (final) data are passed to

the AI models from the ML suite.

 ML Suite: ML Suite is a library of state-of-the-art AI data-driven tools and methods, that is used for

the development of the MATRYCS AI models. Multiple different technologies and software are

exploited for ML (scipy1, scikit-learn2, Spark MLib3), DL (Keras4, Pytorch5, TensorFlow6, Horovod7) and

Image Processing (OpenCV8, scikit-image9). The result is to expose a rich and flexible software library

in order to define, train and deploy ML models, including ANN classifiers, knowledge representation

and reasoning aiming to attach new knowledge and predictions on the existing extreme-scale

streams of data.

 Model Development Module: This module is about the exploitation of the ML Suite and the usage

of the available tools in order to create and train the models based on the existing data. By using

well established and stable methods, such as regression analysis, clustering and neural networks,

the properly transformed data are fed to the training models.

 Model Serving Module: This module constitutes the building blocks of the upper layer and is going

to include the developed and trained models that are being produced by the Model Development

Module. These models are fed with both batch and streaming data, which are output by the Query

Engine and the Data Streaming Module respectively.

1 Scipy, https://www.scipy.org/

2 Scikit-Learn, https://scikit-learn.org/stable/

3 SPARK-MMlib, https://spark.apache.org/mllib/

4 Keras, https://keras.io/

5 Pytorch, https://pytorch.org/

6 Tensorflow, https://www.tensorflow.org/

7 Hovorod, https://horovod.ai/

8 OpenCV, https://opencv.org/

9 Scikit-Image, https://scikit-image.org/

https://www.scipy.org/
https://scikit-learn.org/stable/
https://spark.apache.org/mllib/
https://keras.io/
https://pytorch.org/
https://www.tensorflow.org/
https://horovod.ai/
https://opencv.org/
https://scikit-image.org/

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

15

D4.1 | MATRYCS-PROCESSING (1st technology release)

2.3 Connection with Big Data and IoT Reference

Architecture

The goal of MATRYCS is to define and deliver an open Reference Architecture for Buildings Data, which

ensures compatibility with existing dataset format across Europe and be compliant with applicable EU

standards (e.g. privacy, security, intellectual property). The MATRYCS architecture is following the three-

tier architecture MATRYCS-GOVERNANCE, MATRYCS-PROCESSING and MATRYCS-ANALYTICS.

According to the Big Data Value Chain of MATRYCS framework (Figure 3), the MATRYCS-PROCESSING

will contribute to the Management & Storage and Usage. The technical specifications for MATRYCS-

PROCESSING are AI/ML/DL Training, Testing, Simulation and Visualisation.

Figure 3: BDVC for MATRYCS Framework

The MATRYCS-PROCESSING is a decentralised architecture, where data are being stored locally at the

edge layer and run at the AI layer in centralised cloud. The focus of MATRYCS-PROCESSING is to

implement the Big Data management and AI services layer. It is responsible for specific purposes and

suitable for generating new information and supporting decision-making. Data analysis includes

investigation, transformation, and modelling of data to identify relevant data, compose and extract

useful hidden information with high business potential. It is a broad field that combines knowledge from

many scientific fields and utilises a range of tools such as data mining, ML, DL, and business intelligence.

Specifically, in MATRYCS-PROCESSING there is a library of reusable AI-based ML and DL models that are

developed to adapt and reuse the ML models quickly. The AI components are delivered to the services

for the Digital Building Twins and real-life applications in MATRYCS-ANALYTICS.

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

16

D4.1 | MATRYCS-PROCESSING (1st technology release)

2.4 Connection with MATRYCS-GOVERNANCE Layer

MATRYCS-PROCESSING Layer is connected with the MATRYCS-GOVERNANCE Layer through Data Feed

Module and Serving Framework. More specifically, the Data Feed Module consists of two sub-modules:

The Data Importer and the Data Handler.

The Data Importer is the pipeline, based on APACHE Airflow10 framework that receives data from the

MATRYCS distributed storage/staging area, transforms them into a suitable format to be used for the

training of the ML/DL models. After the preparation process, the data are stored on MATRYCS

MongoDB11.

The Data Handler is the REST service for distributing the transformed data across MATRYCS-

PROCESSING. Furthermore, it allows some ad-hoc operations over stored data. The following schema

(Figure 4) demonstrates the data flow between MATRYCS-PROCESSING and MATRYCS-GOVERNANCE

layers.

Figure 4: Data Feed Connection with MATRYCS-GOVERNANCE

The second connection point with MATRYCS-GOVERNANCE is the Serving Framework which receives

streaming data from MATRYCS-GOVERNANCE and more specifically from the Data Streaming module

to make predictions using trained ML/DL models from models shared storage. Figure 5 demonstrates

the data connection between Serving Framework and MATRYCS-GOVERNANCE layer.

10 APACHE Airflow, https://airflow.apache.org/

11 MongoDB, https://www.mongodb.com/

https://airflow.apache.org/
https://www.mongodb.com/

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

17

D4.1 | MATRYCS-PROCESSING (1st technology release)

Figure 5: Serving Framework connection with MATRYCS-GOVERNANCE

2.5 Connection with MATRYCS-ANALYTICS Layer

IoT and Big Data technologies are becoming crucial components in the management of different

processes in the construction industry. The cross-connection between data and sensor networks

generates systems capable of creating intelligent buildings that reduce consumption and improve

indoor comfort.

According to A. Daissaoui.12, an intelligent system in the context of an intelligent building is composed

by three levels:

 The infrastructure level of the input data: representing all the data sources generated by the

connected objects in the building such as energy consumption, humidity level, indoor and outdoor

temperature, CO2, presence, energy consumption, system controls, etc.

 System infrastructure level: representing the core of the intelligent system since it allows the

collection, processing, and merging and storage data. Thus, this allows the use of this data for

knowledge extraction through data mining algorithms, automatic learning through artificial

intelligence algorithms or simply offering reporting services.

 The level of services: representing the list of services offered by the system to different type of users,

such as building managers, residents, and energy suppliers, etc.

In the MATRYCS project, different analytics building services have been designed to accommodate the

demands of different pilots, and to be able to cover a very wide range of possible demands from different

12 IoT and Big Data Analytics for Smart Buildings: A Survey, A. Daissaoui, A. Boulmakoul, L. Karim, A. Lbath, Procedia Computer

Science – Elsevier, April 2020

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

18

D4.1 | MATRYCS-PROCESSING (1st technology release)

types of users. Four main groups of services have been defined:

 MATRYCS – PERFORMANCE: It represents services able to manage all aspects related to energy

performance and indoor condition of building. Specifically:

 Energy Prediction

 Building Automation Control

 KPIs calculation

 Technical Building Management

 Optimization for network operations.

 MATRYCS – DESIGN: It focalizes in building infrastructure. The main service is the ECM - evaluation

with the related technologies catalogue.

 MATRYCS – POLICY: It provides services for policy making and policy impact assessment. The tools

are:

 SECAPs decision-making support.

 Energy Performance Certification harmonization and checking.

 National and EU policy impacts assessment and support.

 MATRYCS – FUND: in which analytics for de-risking investments in energy efficiency will be

developed.

Together with these groups, two other tools will be developed to cover fundamental aspects of building

design and management. The two tools are Building Digital Twins and the geoclustering tool.

More details about each service will be provided in the deliverable D5.1 – MATRYCS Analytics Building

Services V1.0 (October 2021).

All tools will be stand-alone software. The possibility to be installed both on premises and on cloud is

explored. A key point for the functioning of the services is the access to the data. The latter will be carried

out in three ways:

 direct access to building database

 connection to specific frameworks where different ML algorithms can run generating data and

analysis to be shown in a dedicated front-end

 using the reasoning engine

As far as the specific frameworks is concerned, Figure 6 demonstrates the schema about the connection

of analytics services to data (MATRYCS-GOVERNANCE and MATRYCS-PROCESSING).

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

19

D4.1 | MATRYCS-PROCESSING (1st technology release)

Figure 6: MATRYCS Analytics Connection with Serving Framework

Therefore, the data flows from the MATRYCS-GOVERNANCE to the MATRYCS-PROCESSING in two ways,

using a query engine or directly with the data streaming module. MATRYCS services will use BENTOML13

serving framework to manage all processes in which the use of a ML models is required. BENTOML is a

flexible, high-performance framework for serving, managing, and deploying machine learning models.

It supports multiple ML frameworks, including Tensorflow, PyTorch, Keras, XGBoost and more, it is Cloud

native deployment with Docker, Kubernetes, AWS, Azure,etc. It has a high-performance online API

serving and offline batch serving, and it has Web dashboards and APIs for model registry and

deployment management.

Some of the services that will use BENTOML are the Energy Prediction and the Geoclustering tool.

Figure 7 shows the general approach. The analytic services will use the Reasoning engine to obtain the

data needed to perform the analytics. This approach is useful for all services that need to have data and

metadata processed using a specific data model (es. FIWARE or BRICK schema model) based on standard

ontology. The Building DigitalTwin, KPIs calculation and Measurement and Verification to support ECM

contracts services will use this schema to get data from pilots.

13 BentoML, https://www.bentoml.ai/

https://github.com/bentoml/BentoML#ml-frameworks

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

20

D4.1 | MATRYCS-PROCESSING (1st technology release)

Figure 7: Connection of MATRYCS Analytics to the Reasoning Engine

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

21

D4.1 | MATRYCS-PROCESSING (1st technology release)

3 Data Feed Module
The Data Feed Module is the component responsible for data transferring between MATRYCS-

GOVERNANCE and MATRYCS-PROCESSING. More specifically, it consists of two sub-components: The

Data Importer and the Data Handler.

The Data Importer is a data pipeline system that receives data from MATRYCS distributed storage. When

the data are on boarded to the Data Importer, a series of basic data preparation steps are conducted

over them such as preparation of data to be inserted on MATRYCS MongoDB and deletion of duplicate

and null values. The Apache Airflow has been selected for being the basis of data pipelines management

on Data Feed Module. It contains the following core components:

 Web Server: This is the UI of Airflow that can be used to get an overview of the overall health of

different Directed Acyclic Graphs (DAG) and also in visualizing different states of each DAG14.

 Scheduler: This is the most important part of Apache Airflow, as it orchestrates various DAGs taking

care of their interdependencies.

 Executor: Executors are the components that actually execute tasks. The type of Executor used in

production is the CeleryExecutor, based on Celery framework15, for scaling the execution of

tasks/DAGs across computational resources.

 Meta-data database: This database stores metadata about DAGs and Apache Airflow configuration

details.

The data are inserted to MATRYCS-PROCESSING through Data Importer subcomponent and stored to

MongoDB. The Data Handler is the REST service responsible for distributing these stored data across

MATRYCS-PROCESSING components. This module leverages Python libraries such as Presto16 Python

Client, Pandas Framework for DataFrames17 and FastAPI18 for REST services. The REST APIs are used for

enabling data selection, data aggregation, data grouping, dates handling, numerical scaling, categorical

encoding (one-hot encoding, label encoding) and converting time series to supervised procedures. The

Data Handler is connected with MATRYCS Query Engine (Presto), and all queries are transformed into

SQL queries and all the MongoDB collections are transformed into tables in Presto.

In Table 1 and Table 2 some usage examples of these services are listed. The following query is used for

receiving records with “timestamp”, “value” fields from table “btc_tower” (LSP1) in the period between

“2020-12-01 and 2020-12-02”. The query that is executed on the backend is presented in Table 1.

14 DAG, https://en.wikipedia.org/wiki/Directed_acyclic_graph

15 Celery Framework, https://docs.celeryproject.org

16 Presto, https://prestodb.io/

17 Pandas, https://pandas.pydata.org/

18 FastAPI, https://fastapi.tiangolo.com/

https://en.wikipedia.org/wiki/Directed_acyclic_graph
https://docs.celeryproject.org/
https://prestodb.io/
https://pandas.pydata.org/
https://fastapi.tiangolo.com/

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

22

D4.1 | MATRYCS-PROCESSING (1st technology release)

Table 1: Data Handler REST API call example (LSP1)

 POST /complex/select/query HTTP/1.1

Host: matrycs.epu.ntua.gr:8000

Content-Type: application/json

Content-Length: 158

{

 "table": "btc_tower",

 "columns": ["timestamp", "value"],

 "where_column": "timestamp",

 "between_values": ["2020-12-01", "2020-12-02"]

}

The following query (Table 2) is used for receiving the fields “timestamp”, “produced” from the table

“coopernico_solar_plants” (LSP5) where the solar plant name is “27 Adega Palmela” and the records are

generated after the data “2020-06-25”.

Table 2: Data Handler REST API call example (LSP5)

 POST /complex/select/query HTTP/1.1

Host: matrycs.epu.ntua.gr:8000

Content-Type: application/json

Content-Length: 377

{

 "table": "coopernico_solar_plants",

 "columns": ["timestamp", "produced"],

 "AND_": [

 {

 "where_symbol": ">",

 "where_column": "timestamp",

 "where_clause_term": "2020-06-25"

 },

 {

 "where_column": "solar_plant",

 "where_clause_term": "27 Adega Palmela"

 }],

 "order_by_column": "timestamp"

}

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

23

D4.1 | MATRYCS-PROCESSING (1st technology release)

3.1 High-Level Architecture of Data Feed Module

Figure 8 presents the architecture of Data Feed Module and the data flow from MATRYCS storage along

with the interconnection of the different subcomponents.

Figure 8: Data Feed Component Architecture

The Data Importer waits for incoming data on MATRYCS storage staging area. The staging area is a

distributed file storage where data are placed after the procedures of MATRYCS-GOVERNANCE. The

preparation pipelines are Python 3.7 code integrated on Airflow framework and they apply

transformation steps, for example dropping duplicates, removing null values, and normalizing dates.

These actions are scheduled and executed from Apache Airflow workers, and they are executed when

new data are detected. At the end, the transformed data are inserted to MATRYCS Storage for later use.

The Data Handler is the collection of REST services responsible for distributing the data across MATRYCS-

PROCESSING. These services receive JSON payloads which are processed from Query pre-processing

class of the Data Handler for constructing the Presto-SQL query. These queries are sent to MATRYCS

storage for getting the results back as a response. Furthermore, these APIs are used for data selection,

data aggregation, data grouping, timeseries transformation and could be the input for multiple

MATRYCS components such as Visualization Engine, Serving framework, etc.

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

24

D4.1 | MATRYCS-PROCESSING (1st technology release)

3.2 Migration from ScyllaDB to MongoDB

Since the first months of the project, Scylla DB is used for database. However and during MATRYCS-

PROCESSING technology evaluation activities for the 1st technology release, it was observed that

columnar databases and in particular ScyllaDB due to their nature cannot support nested data formats

and updates on stored data, as ScyllaDB is a schema-depended database. For that reason, databases

that are schema-less and support the storage of nested object were investigated. The outcome of that

procedure was that the MongoDB database is the ideal solution for keeping transformed and prepared

data for ML/DL training. Thus, MongoDB was selected instead of ScyllaDB because it is flexible for

document schemas, easily scalable and optimized for querying and analytics. Furthermore, MongoDB is

the main data store used in various FIWARE components, that would possibly be integrated with

MATRYCS Framework future releases.

Currently, all the components (Visualization Engine, Model Development Module, Serving & Evaluation

Framework) that communicate with Data Feed Module receive data from MATRYCS MongoDB instance.

However, some components, due to their functionality, must have a direct connection with the database

(MATRYCS Workbench). These components use ScyllaDB and have tested the connection with

MongoDB. Until the 2nd technology release, all components will receive data from MongoDB.

Figure 9: Migration from ScyllaDB to MongoDB

Data Migration was the main challenge to deal with, as it was necessary to transfer the existing data

from ScyllaDB to MongoDB. Figure 9 depicts the data migration pipelines. That was accomplished using

a series of Python scripts (Table 3) for receiving all the data from ScyllaDB tables and then batch insert

them to MongoDB. After data migration the new version of the Data Feed has integrated Python

functions for ensuring the connectivity and data exchange between MongoDB and the Data Feed REST

services.

Table 3: Python Script for migrating data from ScyllaDB to MongoDB

from cassandra.cluster import Cluster

import pandas as pd

ScyllaDB Connection

cluster = Cluster(['matrycs.epu.ntua.gr'])

session = cluster.connect('matrycs_transformed')

Retrieve data from ScyllaDB

scylladb_btc_data = pd.DataFrame(session.execute('SELECT * FROM btc_data')).to_dict('records')

MongoDB Connection

mongo_conn = pymongo.MongoClient('mongodb://${user}:${password}@matrycs.epu.ntua.gr:27017/')

db = mongo_conn['matrycs_transformed']

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

25

D4.1 | MATRYCS-PROCESSING (1st technology release)

#Create collection named btc_data and bulk insert the btc data

collection = db['btc_data']

collection.insert_many(scylladb_btc_data)

3.3 Data Feed Model Deployment Approach

The Data Feed Module and its components are installed and configured using Docker19 compose and

bash scripts. The following script deploys the Data Importer and the Data Handler modules, and it is

displayed below (Table 4).

Table 4: Data Feed Module Docker compose

 version: '3.2'

services:

 postgres:

 image: postgres:9.6

 container_name: postgres

 hostname: postgres

 restart: always

 environment:

 - POSTGRES_USER=airflow

 - POSTGRES_PASSWORD=airflow

 - POSTGRES_DB=airflow

 ports:

 - 5432:5432

 volumes:

 - pgdata:/var/lib/postgresql/data

 networks:

 - airflow

 redis:

 container_name: redis

 hostname: redis

 image: redis:5.0.5

 environment:

 REDIS_HOST: redis

 REDIS_PORT: 6379

 ports:

19 Docker, https://www.docker.com/

https://www.docker.com/

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

26

D4.1 | MATRYCS-PROCESSING (1st technology release)

 - 6379:6379

 networks:

 - airflow

 webserver:

 container_name: webserver

 hostname: webserver

 build:

 context: '..'

 dockerfile: config/Dockerfile

 env_file:

 - .env

 ports:

 - 8080:8080

 volumes:

 - ../dags:/opt/airflow/dags

 - ../PythonProcessors:/opt/airflow/PythonProcessors

 - ../utils.py:/opt/airflow/utils.py

 - ../MongoDBClient:/opt/airflow/MongoDBClient

 - ../data:/opt/airflow/data

 - ../settings.py:/opt/airflow/settings.py

 - ../models:/opt/airflow/models

 depends_on:

 - postgres

 - redis

 - initdb

 command: webserver

 healthcheck:

 test: ["CMD-SHELL", "[-f /opt/airflow/airflow-webserver.pid]"]

 interval: 30s

 timeout: 30s

 retries: 3

 networks:

 - airflow

 scheduler:

 container_name: scheduler

 hostname: scheduler

 build:

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

27

D4.1 | MATRYCS-PROCESSING (1st technology release)

 context: '..'

 dockerfile: config/Dockerfile

 env_file:

 - .env

 volumes:

 - ../dags:/opt/airflow/dags

 - ../PythonProcessors:/opt/airflow/PythonProcessors

 - ../utils.py:/opt/airflow/utils.py

 - ../MongoDBClient:/opt/airflow/MongoDBClient

 - ../data:/opt/airflow/data

 - ../settings.py:/opt/airflow/settings.py

 - ../models:/opt/airflow/models

 command: scheduler

 depends_on:

 - postgres

 - initdb

 - webserver

 networks:

 - airflow

 worker:

 container_name: worker

 hostname: worker

 build:

 context: '..'

 dockerfile: config/Dockerfile

 env_file:

 - .env

 volumes:

 - ../dags:/opt/airflow/dags

 - ../PythonProcessors:/opt/airflow/PythonProcessors

 - ../utils.py:/opt/airflow/utils.py

 - ../MongoDBClient:/opt/airflow/MongoDBClient

 - ../data:/opt/airflow/data

 - ../settings.py:/opt/airflow/settings.py

 - ../models:/opt/airflow/models

 command: celery worker

 depends_on:

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

28

D4.1 | MATRYCS-PROCESSING (1st technology release)

 - scheduler

 networks:

 - airflow

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

29

D4.1 | MATRYCS-PROCESSING (1st technology release)

4 Machine Learning Suite
The ML Suite is provided through the use of ML libraries such as numpy20, scipy, scikit-learn, etc. Libraries

from the realm of so called “AutoML” are also provided, such as AutoGluon21, AutoSklearn22, etc.

The ML Suite is automatically provisioned, using Infrastructure-as-code tools. The highlighted part of

the following figure (Figure 10) visually demonstrates the dynamic role that a requirements.txt file plays

at the time of provisioning, as triggered by an ‘Admin’. Specifically, the Admin user can trigger the

installation of new libraries to be exposed from Machine Learning Suite

Figure 10: ML Suite Starting Phase

The requirements.txt file contains pinned versions of all the open-source libraries that together present

the ML Suite, which is then available to every user of the Model Development Module. The entries of

the requirements.txt file contain such lines, with the name of the library to the left of the equals sign,

and its version to the right:

 auto-sklearn==0.12.6

 tensorflow==2.5.0

 torch==1.6.0

20 Numpy, https://numpy.org/

21 https://github.com/awslabs/autogluon

22 https://automl.github.io/auto-sklearn/master/

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

30

D4.1 | MATRYCS-PROCESSING (1st technology release)

The ML Suite can be enriched with additional libraries post-deployment by the Admin user – the newly

installed libraries will be available to all users. Additionally, every user may install libraries if fitting in own

local workspace by executing the following command in his Notebook:

 !pip install --user <library_name>

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

31

D4.1 | MATRYCS-PROCESSING (1st technology release)

5 Model Development Module
The Model Development Module leverages the ML Suite module, as described in the previous section,

and provides both a personal workspace to every ML/DL developer as well as shared, pre-defined

pipelines for classification, regression and timeseries forecasting tasks. The following figure

demonstrates the Model Development Module functionality.

Figure 11: Model Development Module high level Architecture

As demonstrated in Figure 11, a ML/DL developer can interact with Model development module using

GitHub Authentication provider. The GitHub Authentication provider will be replaced from End-to-End

security framework on MATRYCS PROCESSING second technology release. After authentication the user

can start training using processed data provided from Data Feed REST APIs. ML Suite provides the ML/DL

libraries for developing ML/DL models. The code provided from end users triggers the ML/DL pipelines.

The training metadata (e.g. metrics, data) are stored to Model Development local storage. The output

of the training pipelines are trained models that are stored on Model Shared Storage.

Model development interacts with Data Feed module for receiving processed data through REST API

calls, also interacts with ML Suite module for leveraging all the available ML/DL libraries and finally with

the Evaluation and Serving Framework for evaluating and serving the models after training through

Model Shared Storage.

Model Development Deployment on AWS

All the major cloud providers currently offer managed and proprietary services that could serve as the

Model Development Module. Examples of such services are AWS SageMaker23 and Google Cloud

23 https://aws.amazon.com/sagemaker/

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

32

D4.1 | MATRYCS-PROCESSING (1st technology release)

Datalab24. As both the Model Development Module and the Shared Models Storage should be kept as

flexible as possible. It was decided to provide the Model Development Module using the JupyterHub25

open-source project. Specifically, it is provided via The Littlest JupyterHub26, which serves as a wrapper

around JupyterHub and is meant for a single server deployment. Figure 12 demonstrates the workflow

needed to be followed from Model Development Module for configuring AWS infrastructure

Figure 12: Separate AWS Account containing Module’s components

The Model Development Module is deployed on an AWS virtual machine27. The workspace is also set up

in a way so that every user receives a sample Jupyter Notebook and a guiding README on how to use

the existing pipelines28. Via the same infrastructure code, the Shared Models Storage is also provisioned

as an S3 bucket. During the provisioning, the virtual machine that hosts JupyterHub is set up with all the

required read and write rights towards the Model Shared Storage (S3 bucket). Thus, the users of the

Model Development Module will not interfere with external storages or authentication as the Model

Development Module can upload the trained models to the Shared Models storage transparently. The

whole infrastructure is done through the Terraform, an Infrastructure-as-code tool29. The provisioning is

triggered by an admin user who controls the initiation of Models Shared storage. The provisioning is

triggered with the following command (Table 5) from admin user:

24 https://cloud.google.com/datalab/docs

25 https://jupyter.org/hub

26 https://tljh.jupyter.org/

27 Available at https://matrycs.comsensus.eu

28 https://matrycs.comsensus.eu/hub?next=%2Fuser-redirect%2Fgit-

pull?repo%3Dhttps%253A%252F%252Fgithub.com%252FComSensus%252Fjupyterhub-

resources%26branch%3Dmain%26urlpath%3Dlab%252Ftree%252Fjupyterhub-

resources%252Fsample.ipynb%253Fautodecode

29 https://www.terraform.io/

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

33

D4.1 | MATRYCS-PROCESSING (1st technology release)

Table 5: Provisioning Command

terraform apply -var-file="production.tfvars"

An abbreviated, incomplete code to provision the server, annotated as “Amazon EC2” on the images, is

the following (Figure 13):

Figure 13: Terraform provisioning code of EC2

The secure connection to the Model Development Module at https://matrycs.comsensus.eu is served

using an AWS load balancer together with a certificate provided by AWS Certificate Manager30. The

authentication is done with GitHub serving as an OAuth2 provider. Once the user is authenticated, the

initial JupyterHub screen appears (Figure 14). The workspace can also be set up so that every user

receives a sample Jupyter Notebook along with a guiding README on how to use the provided pipelines.

All libraries from the ML Suite are seamlessly provided to the user.

Figure 14: Model Development Module JupyterHub

30 https://aws.amazon.com/acm/

https://matrycs.comsensus.eu/

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

34

D4.1 | MATRYCS-PROCESSING (1st technology release)

The ML/DL developer that uses the Model development module can receive data processed from Data

Feed Module or by using the MATRYCS Query Engine to receive data from other sources. The output of

training pipeline are the trained models where they are uploaded directly to Model Shared Storage or

stored locally to Model Development Module workspace. An example usage of the provided pipeline is

shown in the following snippet, with a highlighted usage of the Shared Models Storage (Figure 15).

Figure 15: Pipeline option that enables usage of the Shared Models Storage

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

35

D4.1 | MATRYCS-PROCESSING (1st technology release)

6 Model Serving Module
The MATRYCS project foresees that a certain number of Machine Learning models will be developed

during the Model Development phase. The ML models will be the building blocks of the MATRYCS

Analytics layer and will be developed to be capable of fulfilling the needs expressed by the pilots during

the preliminary project phase in which the different Pilot’s requirements are collected. The development

of ML models and their automatic learning is certainly a critical part of the project and requires steps to

be taken before they can be considered reliable and valid and used for their intended purpose.

In particular, two parties take part in these activities: the developer of the models and the end-user who,

in order to use them in his own services, may invoke them through a serving system or incorporate them

directly into his own code. This differentiation turns a light on what similar to the concept of DevOps is

defined as MLOps 31and that is the practice adopted for the MATRYCS project. MLOps comes into play

to unify the two processes of developing ML models (Dev) and putting them into operation (Ops) that

is the goal of this serving module. In particular, the Model Serving phase is the process that is

downstream of a series of preparatory steps ranging from data acquisition, model training and model

evaluation with subsequent refinement cycles. In summary, the following image (Figure 16) shows this

process being managed manually, starting with the data manager, continuing with the model developers

and concluding with the serving of the models.

Figure 16: MLOps process – Model serving

It is clear that the development of models and their use is potentially the responsibility of different

working groups/project partners and that they do not necessarily use the same software to develop and

run the ML models and do not always have the possibility of using development and execution

environments that are compatible with the technologies and libraries used by one group rather than the

other. To accomplish this task, the concept of "model serving" came into play. Its purpose is to serve

models that have been previously trained and evaluated, and which is capable of executing ML models

31 MLOps, https://en.wikipedia.org/wiki/MLOps

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

36

D4.1 | MATRYCS-PROCESSING (1st technology release)

by having a runtime environment capable of executing as many different software libraries as required,

thus allowing an almost agnostic interaction between the developer of the models and the consumer.

Within the MATRYCS project, a series of analytical requirements have been defined for specific use cases,

to be solved using specific services by certain user groups. Although at this point of the project not all

these ML models have yet been developed and the libraries necessary for their development are not

known, it can be assumed that libraries and technologies among the most commonly used by the

scientific community will be used and that the Serving Framework must be a multi-framework

environment able to support models developed with technologies/libraries such as:

 Scikit-learn32,

 Pytorch 33

 Pytorch Lightning 34

 Tensorflow 35

 FastAI 36v1

 Keras 37(Tensorflow 2.0 as the backend)

 fastText 38

 CoreML 39

 Spacy 40

 Transformers 41

At the same time, the intention is to provide those who will consume the ML models with as much

information as possible about the available ML models through a WEB user interface showing the

relevant catalogue of available models and serving these through high performance APIs for consumers

without the need for lower-level web server development. To this purpose, a study was made on the

most popular ML model serving techniques and their existing frameworks and how much they can be

potentially customised to meet the needs of the MATRYCS project. Frameworks such as TensorFlow

Serving42, ML-FLOW43, AWS SageMaker44, BentoML45 and so on were analysed and at the end of this

study, the BentoML was our choice for different aspects, both technical and operational that fits with the

project needs.

32 Scikit-Learn, https://scikit-learn.org/stable/
33 Pytorch, https://pytorch.org/
34 Pythorch Lightening, https://www.pytorchlightning.ai/
35 Tensorflow, https://www.tensorflow.org/
36 FastAI, https://www.fast.ai/
37 Keras, https://keras.io/
38 Fasttext, https://fasttext.cc/
39 CoreML, https://developer.apple.com/documentation/coreml
40 Spacy, https://spacy.io/
41 Transformers, https://huggingface.co/transformers/
42 TensorFlow Serving, https://www.tensorflow.org/tfx/tutorials/serving/rest_simple
43 Ml-FLOW, https://mlflow.org/
44 AWS SageMaker,https://aws.amazon.com/it/sagemaker/
45 BentoML, https://www.bentoml.ai/

https://docs.bentoml.org/en/latest/frameworks.html#fastai-v1
https://docs.bentoml.org/en/latest/frameworks.html#keras-tensorflow-2-0-as-the-backend
https://www.tensorflow.org/

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

37

D4.1 | MATRYCS-PROCESSING (1st technology release)

6.1 Model Serving Architecture

The Model Serving is placed within the project conceptual architecture in the MATRYCS-PROCESSING

Layer and represents the contact point between this layer and the underlying MATRYCS-GOVERNANCE

Layer and the MATRYCS-ANALYTICS Layer. It will serve the ML models saved under the Trained Models

library and already trained by the ML developers and subsequently evaluated and refined thanks to the

Model Evaluation & Validation module.

Figure 17: MATRYCS conceptual architecture - Serving Module

As mentioned earlier in the conceptual architecture (Figure 17), the service module is the tool capable

of providing the results of ML model processing to the MATRYCS-ANALYTICS Layer, thus feeding the

various services of the related Toolbox. The next figure (Figure 18) demonstrates the architecture of the

Serving Framework and the interaction between the different modules and layers. The data will be read

in two different ways: either through the Data Feed Module, which has the task to prepare the data

provided by the Query engine for the different needs of the ML models, or through the Data Streaming

Module (see deliverable D3.1 - MATRYCS-GOVERNANCE (1st Technology release) – Section 3.4) which

sends the data through Kafka streaming under specific topics).

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

38

D4.1 | MATRYCS-PROCESSING (1st technology release)

Figure 18: Serving module conceptual architecture

6.2 Model Serving technological components

Serving framework core component

The technological choice took into account several characteristics that are intended to be given to the

Serving framework. Ease to use even for users who are not necessarily ML experts, the presence of APIs

that can be invoked directly by the services to be developed or through a graphical interface, the

presence of an easily accessible repository for loading and managing models via specific APIs, whether

external to the project or developed directly in the project, simplicity in the extension of the ML libraries

adding new ones, and being ready for deployment in cloud platforms, which must be as free as possible

from architectural constraints. For all the above, the BentoML framework has been adopted as the engine

of the MATRYCS serving framework.

Below are the main characteristics of the Serving framework solution:

 The Serving Framework provides a Web UI to send prediction requests, and related APIs for model

registry and deployment management. Yatai46, model management component of BentoML, is

available via Web UI, CLI, Python API.

 Production-ready online API serving and adaptive offline batch serving.

46 Yatai, https://docs.bentoml.org/en/latest/api/yatai_client.html

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

39

D4.1 | MATRYCS-PROCESSING (1st technology release)

 Various ML frameworks, including Tensorflow47, PyTorch48, Keras49, XGBoost50, FastText51, CoreML52,

Spacy53 etc. are supported.

 Supports deployment with open-source platforms like Docker54, Kubernetes55, Kubeflow56, etc. as

well as one-click deployment with AWS Lambda57, Azure Functions 58and others, and manual cloud

deployment with AWS ECS59, Google Cloud Run60, Heroku61.

 Possibility to serve sets of multiple models.

Serving framework repository

At this stage of the project a specific repository has been configured to create a staging area to save the

ML models after the training and evaluation process and is accessible from the external. This repository

will be replaced with the official project ML models library. At the same time, the Serving Module

repository has been appropriately configured and is accessible from the outside to upload ready-to-use

models. A direct access has been tested and configured to allow the delivery of models directly from the

evaluation framework environment at the end of the evaluation and refinement models’ process.

Figure 19: Serving framework ML models repository (Yatai Web UI)

47 Tensorflow, https://www.tensorflow.org/
48 Pytorch, https://pytorch.org/
49 Keras, https://keras.io/
50 XGBoost, https://xgboost.readthedocs.io/en/latest/
51 FastText, https://fasttext.cc/
52 CoreML, https://developer.apple.com/documentation/coreml
53 Spacy, https://spacy.io/
54 Docker, https://www.docker.com/
55 Kubernetes, https://kubernetes.io/
56 Kubeflow, https://www.kubeflow.org/
57 AWS Lambda, https://en.wikipedia.org/wiki/AWS_Lambda
58 Azure functions, https://azure.microsoft.com/en-us/services/functions/
59 AWS ECS, https://aws.amazon.com/ecs/?nc1=h_ls&whats-new-cards.sort-by=item.additionalFields.postDateTime&whats-new-

cards.sort-order=desc&ecs-blogs.sort-by=item.additionalFields.createdDate&ecs-blogs.sort-order=desc
60 Google cloud run, https://cloud.google.com/run
61 Heroku, https://www.heroku.com/

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

40

D4.1 | MATRYCS-PROCESSING (1st technology release)

Serving framework ML libraries

An analysis of the main used ML libraries has been done and for the 1st technology release, a subset of

these ML libraries has been installed and tested into the serving framework environment to permit the

serving of the first test ML models. New libraries will be installed and tested based on the different

models that will be developed during the project ML development phase.

Serving framework APIs

Basic APIs have been created to test simple already available ML models and are available both via batch

commands and via a Swagger user interface for a fast access without code writing.

Figure 20: Swagger REST API

6.3 Serving framework deployment approach

In the context of MATRYCS project, Serving Framework services have been deployed using Docker

technologies. As it is previously stated, there is a number of possible deployment ways. The choice of

the type of installation fell on Docker for its versatility, given the possibility of deploying it on different

environments, also in light of the fact that at this stage of the project the final infrastructure has not

been identified, for its ability to manage failure and recovery problems and the ease of creating

snapshots of the environment in use to be redeployed in any other environments, because it allows the

simultaneous use of different versions of the same application during the periods of testing of new

functions without interrupting what is already in place. Docker 62enables fast, easy, and transferable

application development, and deploying the applications in Docker containers. Docker Compose 63is a

tool for creating and running multiple Docker containers with Docker applications.

The process of utilizing Docker Compose is the following:

 If needed, create a Dockerfile in which the application’s environment and additional configuration

of the base image are set.

 Then, services based on the applications are defined in the YAML file, so they run together,

preferably in the same network.

62 Docker, https://www.docker.com/
63 Docker compose, https://docs.docker.com/compose/

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

41

D4.1 | MATRYCS-PROCESSING (1st technology release)

 In the end, the “docker-compose up -d” command is issued to start running the applications in

Docker Containers.

Table 6: Example of Docker Compose YAML file for BentoML services

version: "3.1"

services:

 bentoml:

 image: bentoml/model-server:latest

 command: bash -c "pip install wheel && pip install pandas && pip install sklearn && bentoml

serve-guncorn /root/bentoml --enable swagger --yatai-url 217.172.12.158:8891"

 ports:

 - "8882:3000"

 - "8883:50051"

 - "8884:5000"

 - "8885:33513"

 - "8886:5000"

 volumes:

 - /root/bentoml/repository/TestClassifierMultiple/20210512100649_D1B6F7:/root/bentoml

 networks:

 - yatai

 yatai-service:

 restart: unless-stopped

 image: bentoml/yatai-service:latest

 command: " --db-url=postgresql://postgres@yatai-db:5432/bentomldb --repo-base-

url=/bentoml/repository"

 volumes:

 - /root/bentoml:/bentoml

 environment:

 - BENTOML_HOME=/bentoml

 - REPOSITORY_BASE_URL=/bentoml/repository

 depends_on:

 - yatai-db

 environment:

 - REPO_BASE_URL=/bentoml/repository

 ports:

 - "8890:3000"

 - "8891:50051"

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

42

D4.1 | MATRYCS-PROCESSING (1st technology release)

 networks:

 - yatai

 yatai-db:

 image: library/postgres:9.6.20

 environment:

 - LC_ALL=C.UTF-8

 - POSTGRES_DB=bentomldb

 - POSTGRES_USER=postgres

 - POSTGRES_PASSWORD=

 - POSTGRES_HOST_AUTH_METHOD=trust

 volumes:

 - /dati/bentoml/testdb:/var/lib/postgresql/data

 ports:

 - "8999:5432"

 networks:

 - yatai

networks:

 yatai: {}

From the Docker Compose YAML file, it can be seen that:

 All images used are latest images from the official BentoML’s Docker HUB site.

 Volumes are created that enable persisting multiple ML models that will be served, the whole

repository of all ML models, and the data from the PostgreSQL database.

 All necessary ports are opened and mapped, which facilitates seamless connection between the

containers as well as exposing APIs to the users.

 Environment variables necessary for running the containers are set.

For serving ML models, a Docker container is created from the image bentoml/model-

server:latest. The commands that run in the container enable the production version of the tool,

and Swagger API, which facilitates easy queries about metadata, and what is most important, calls to the

prediction service of each deployed model.

The official Docker images for BentoML can be found on the official docker hub64. It should be pointed

out that, on the host machine, using the BentoML library in Python environment, the bundles of ML

models are created and prepared to be served in one of the proposed ways. The MATRYCS Serving

framework is created with the aim to be easily integrated at the end of the ML model training workflow.

Besides using Docker technologies, there is another way to deploy BentoML to serve multiple ML models

at once, which is also leveraged in our environment. In this additional way, BentoML is called from the

Python environment to create a production-ready service that will have the same capabilities as

64 BentoML docker hub official page https://hub.docker.com/u/bentoml

https://hub.docker.com/u/bentoml

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

43

D4.1 | MATRYCS-PROCESSING (1st technology release)

dockerized version. Both approaches to deployment have been analysed and assessed.

Another important tool that has been identified, installed and configured for the Serving Framework

environment is a BentoML65’s model management tool called Yatai66. It is used to store all ML models

to be served and run as a deployment automation component also. Yatai provides WEB UI, CLI and

Python API to the bundles of ML models that are created within the Serving Framework. Two databases

can be used, SQLite67 or PostgreSQL68. For the production mode, PostgreSQL database deployed in the

Docker container is an advisable solution. This approach is taken in the MATRYCS project too.

Figure 21 demonstrates the running Docker containers of a couple of Serving Framework tools, namely

Yatai and PostgreSQL components.

Figure 21: Docker running containers

65 BentoML, https://www.bentoml.ai/
66 Yatai, https://docs.bentoml.org/en/latest/api/yatai_client.html
67 SQLite, https://www.sqlite.org/index.html
68 PostgreSQL, https://www.postgresql.org/

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

44

D4.1 | MATRYCS-PROCESSING (1st technology release)

7 Evaluation Framework
The MATRYCS project envisages that during the Model Development phase a certain number of ML

models are developed able to satisfy the needs expressed by the end-users as defined from the use

cases developed in the first months of the project and constitute the building blocks of the upper layers

of MATRYCS ANALYTICS Layer. These ML models after the development and training need a process of

evaluation and refinement through appropriate techniques that determine for example the accuracy,

performance, and error level. before the models can be served.

To define the cycle described above, two different aspects make up this activity: the development of

models and their testing and the final use of the models for example through specific functions and

services. This differentiation sheds light on what, similarly to the concept of DevOps, is called MLOps

and which is the practice adopted for the MATRYCS project. MLOps comes into play to unify the two

processes of ML model development (Dev) which is the objective of this service module and

commissioning (Ops) which is better specified in the section dedicated to the Model Serving Module. In

particular, the model testing phase is the process that lies halfway between model development and

training and the subsequent serving of the models. In summary, Figure 22 shows this process starting

with the data manager, moving to the model developers and their evaluation, and concluding with the

model serving.

Figure 22: MLOps process – Model evaluation

Within the MATRYCS project, a series of analytical requirements have been defined for specific use cases,

to be solved using specific services by certain user groups, such as EPC calculations rather than the

calculation of expected production from photovoltaic panels rather than energy efficiency mechanisms,

these services need certain ML models to provide data for their calculations that need to be evaluated

and refined before to be served via the Serving framework module and used inside specific services.

During this first phase of the project, it was decided to make available common tools for model

developers that could facilitate the evaluation process of the developed models after their training

phase. In particular, the main features identified are:

 A common repository where to save the developed models and keep track of the different versions

created during the finishing phase.

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

45

D4.1 | MATRYCS-PROCESSING (1st technology release)

 A common access point to the different data sets of the project whether they come from assets of

the different pilots or from sources outside the project.

 A common set of tools for testing and evaluating models and refining them if necessary.

 A common set of tools to keep track of the logs related to the processing results and related metrics

that can also be easily analysed through a graphical interface.

 An environment capable of providing developers with the most common ML libraries and that can

be easily updated with new ones if needed.

7.1 Evaluation framework Architecture

The evaluation framework is placed into the project conceptual architecture within the MATRYCS-

PROCESSING Layer (Figure 23) and is part of the Model Development phase. It will evaluate the ML

models already trained by the ML developers to be ready to be served to the upper MATRYCS-

Processing Layer and used by the different services that will be developed within the MATRYCS project.

The evaluation framework will use the data coming via the Data Feed module.

Figure 23: MATRYCS conceptual architecture - Evaluation framework

Figure 24 demonstrates the architecture of the Evaluation Framework and the interaction between the

different modules and layers.

Model Evaluation Module provides the already configured environment and relative tools for the ML

models developer and tester. It provides a dedicated repository to store the models and related

versioning. This module is connected to the Data Feed Module using the instruments provided by the

module that retrieve data by the Query Engine module.

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

46

D4.1 | MATRYCS-PROCESSING (1st technology release)

The Model Training Library will share the already trained model sending these directly to the Model

Evaluation Module shared repository.

Figure 24: Evaluation framework architecture

7.2 Evaluation framework technological components

Evaluation framework core component

The technology choice for this first phase of the project considered several features that are intended to

give the assessment framework to provide a ready-to-use environment that can be extended. At this

stage of the project, the common tools to test and evaluate the ML models are provided thanks to the

installation of the Anaconda Data Science Platform69 that contains a set of tools able to provide to the

data engineers and scientist the instrument for their development and analysis.

More precisely, the following tools have been identified, appropriately installed, and configured for the

user needs:

 Anaconda70 environment with Jupyter Notebook71

69 https://www.anaconda.com/
70 Anaconda, https://www.anaconda.com/
71 Jupyter, https://jupyter.org/

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

47

D4.1 | MATRYCS-PROCESSING (1st technology release)

 Specific libraries that enable straightforward usage of trained ML models and related evaluation,

such as Numpy72, Pandas73, TensorFlow74, Keras75, TensorBoard76, Scikit-learn77, Pytorch78,

Matplotlib79, Seaborn80, etc.

 Different Python libraries that enable connection to other modules and APIs such as Kafka Stream81,

Databases82, Cloogy83 API, etc.

Below, Figure 25 presents the aforementioned environment:

Figure 25: Jupyter Notebook with TensorFlow, Keras, TensorBoard

An analysis of the main used ML libraries has been done and for the purposes of the 1st technology

release, a subset of these ML libraries has been installed and tested into the evaluation framework

environment to permit the evaluation of the first test ML models. New libraries will be installed and

72 Numpy, https://numpy.org/
73 Pandas, https://pandas.pydata.org/
74 Tensorflow, https://www.tensorflow.org/
75 Keras, https://keras.io/
76 TensorBoard, https://www.tensorflow.org/tensorboard
77 Scikit-Learn, https://scikit-learn.org/stable/
78 Pytorch, https://pytorch.org/
79 MatplotLib, https://matplotlib.org/
80 Seaborn, https://seaborn.pydata.org/
81 Kafka Stream, https://docs.confluent.io/platform/current/streams/index.html
82 Databases, https://pypi.org/project/databases/
83 Cloogy, https://pypi.org/project/cloogy/

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

48

D4.1 | MATRYCS-PROCESSING (1st technology release)

tested based on the different models that will be developed during the project ML development phase.

Evaluation framework Common Repository

A specific repository has been configured to create a staging area to save the ML models coming from

the ML trained library. These models will be evaluated and saved to be ready for the Serving phase via

the official project model library.

To easy sharing and transferring ML models between different modules in the MATRYCS project, a SFTP

server is configured on-premises. Dedicated users are created. Folders for uploading and downloading

are set, and credentials are shared among partners.

Figure 26: ML models staging area

7.3 Evaluation framework deployment approach

There are several ways in which the environment for ML models evaluation can be deployed. Docker is

one of the most obvious choices, but because of effortless interaction with other modules of the

MATRYCS project, the use of a traditional approach was decided. Anaconda package manager and all

necessary libraries have been installed on Centos 8 operating system. The instructions for the range of

Anaconda package manager installations are available at the official online documentation84.

Steps for Anaconda installation include:

 Prerequisites are having sudo privileges, enough memory, processor power, and storage on the

VMs, and access to the terminal window.

 Latest Anaconda Version can be downloaded with curl tool and saved in the appropriate folder.

 Run the Anaconda Installer script using bash. Go through configuration steps as installation

progresses.

 Set and load the path to the conda command.

 Verify the installation.

 To run the Jupyter package, issue the command: jupyter notebook --notebook-

dir=/opt/notebooks --ip='0.0.0.0' --port=8888 --no-browser --allow root

&. Note that all notebooks, files, and data for Evaluation framework will be saved in the folder

/opt/notebooks.

84 Anaconda online documentation https://docs.anaconda.com/anaconda/install

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

49

D4.1 | MATRYCS-PROCESSING (1st technology release)

 Keep the token received upon the start of Jupyter Notebook, as this token is access token that needs

to be shared to everyone that need access.

The chosen deployment approach is easily transferable because all the Jupyter notebooks, data, and ML

models are saved in folders that are regularly backed up and effortlessly portable.

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

50

D4.1 | MATRYCS-PROCESSING (1st technology release)

8 MATRYCS-PROCESSING Integration on M11
The scope of this section is to demonstrate the MATRYCS–PROCESSING components and processes

through the flow of two LSPs and in particular LSP1 (BTC) and LSP5 (COOPERNICO) datasets. The code

set for the MATRYCS PROCESSING 1st technology release could be found in this link

https://github.com/Matrycs. The repository is private now because the code contains information such

as usernames and passwords but in the 2nd technology release will be public and confidential information

will be removed.

8.1 Connection with MATRYCS-GOVERNANCE Layer

The Data Importer detects LSP1 and LSP5 datasets on MATRYCS staging area, which are processed from

the MATRYCS-GOVERNANCE layer. After the detection, these files are inserted on MATRYCS’s MongoDB

through Data Feed Module, and in this way the aforementioned data are checked into the MATRYCS-

PROCESSING layer. Data Feed Module REST Services are responsible for exposing the LSP data to

MATRYCS-PROCESSING components. In this layer of the architecture all MATRYCS-PROCESSING

components receive data stored in the MongoDB.

8.2 Data Feed Module

As mentioned on Section 3.1, the Data Feed module consists of two submodules: the Data Importer and

the Data Handler. In this section the usage of Data Feed components over LSP1 (BTC) and LSP5

(COOPERNICO) datasets is demonstrated. The LSP1 dataset contains hourly electricity consumption data

from BTC tower and the LSP5 dataset contains production data from six COOPERNICO solar plants.

8.2.1 LSP1

The Data Importer searches for files on BTC directory and, by leveraging the Airflow File85 and SFTP86

sensors, it detects new files on BTC distributed directory. These files constitute the output of MATRYCS-

GOVERNANCE, on MATRYCS distributed file storage. Consequently, these files are loaded and queued

for processing (date normalization and numerical scaling).

After performing base processing, the data are stored to MATRYCS MongoDB. The actions carried out

are:

 dates handling,

 scaling of numerical values,

 dropping null values,

 removing duplicates

85AirflowFileSensor, https://airflow.apache.org/docs/apacheairflow/1.10.11/_modules/airflow/contrib/sensors/file_sensor.html
86AirflowSFTPSensor, http://airflow.apache.org/docs/apacheairflow/1.10.12/_modules/airflow/contrib/sensors/sftp_sensor.html

https://github.com/Matrycs

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

51

D4.1 | MATRYCS-PROCESSING (1st technology release)

Figure 27 showcases the set of base processing activities undertaken by the Data Importer for LSP1.

Figure 27: Data Importer procedures for BTC Tower of LSP1

The Data Handler is responsible for distributing the data across the MATRYCS-PROCESSING layer, via

REST API calls. Specifically, it is an extra layer which applies the necessary transformations over the data

that are stored in MATRYCS’s MongoDB.

These extra transformations are:

 Data grouping

 Data aggregations (MIN, MAX, COUNT, AVG, SUM)

 Time series preparation

 Categorical encoding (label encoding, one hot encoding)

 Moving average smoothing

Examples of Data Handler’s REST API calls for LSP1

The REST API calls below demonstrate the usage of the Data Handler for transforming the BTC data.

The following (Table 7) REST API call is used for receiving the summary of production value per hour

using the Data Handler’s group query to find the sum of value field on hour groups.

Table 7: GroupBy query REST API call for LSP1

POST /complex/group/query HTTP/1.1

Host: matrycs.epu.ntua.gr:8000

Content-Type: application/json

{

“aggregation_metric”: “SUM”,

“aggregation_column”: “value”,

“grouping_columns”: [“hour”],

“table”: “btc_tower”,

“aggregation_metric_alias”: “total”

}

The following (Table 8) REST API is used for enabling extra transformation over stored BTC tower data.

More specifically the “value” field is normalized using min-max scaling. The fields “unit_of_measure”,

“energy_source” and “interval” are categorical variables. By using the transformation actions, which are

a feature of the Data handler, they are encoded and at the end these data are indexed using the

“timestamp” field. Below is the HTTP request used.

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

52

D4.1 | MATRYCS-PROCESSING (1st technology release)

Table 8: Feature selection REST API call for LSP1 data

POST /feature/selection HTTP/1.1

Host: matrycs.epu.ntua.gr:8000

Content-Type: application/json

{

 "table": "btc_tower",

 "all": "true",

 "columns_to_normalize": ["value"],

 "columns_to_encode": ["unit_of_measure", "energy_source", "interval"],

 "date_column": "timestamp"

}

8.2.2 LSP5

 For LSP5, the Data Importer looks for files on COOPERNICO directory and the Airflow sensors detect

the new files for processing using Pandas DataFrames. The following processing steps are for:

 handling null values,

 data normalization,

 scaling numerical values and

 dropping duplicates.

By leveraging the parallelism of Apache Airflow CeleryExecutor, all these procedures are applied on

parallel for all solar plants data detected on MATRYCS distributed file storage. At the end, the processed

data are stored to MATRYCS MongoDB. The following figure (Figure 28) demonstrates the processing

tasks for 6 COOPERNICO solar plants detected on COOPERNICO distributed directory.

Figure 28: Data Importer procedures for LSP5 Solar plants

Once the MATRYCS MongoDB is populated with the transformed LSP5 solar plants’ data, the Data

Handler can be used for applying extra steps of transformation such as feature selection, data

aggregation, data grouping, categorical encoding, numerical scaling, timeseries transformations and

moving averages.

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

53

D4.1 | MATRYCS-PROCESSING (1st technology release)

Examples of Data Handler’s REST API calls for LSP5

The following REST API call (Table 9) is used for selecting average production value from solar plant “27

Adega Palmela” where timestamp is higher than “2020-06-25”. More specifically it uses the endpoint for

submitting complex queries to Data Handler, as follows (Table 9):

Table 9: Selection query REST API call for LSP5

POST /complex/select/query HTTP/1.1

Host: matrycs.epu.ntua.gr:8000

Content-Type: application/json

{

 "table": "coopernico_solar_plants",

 "aggregation_metric": "AVG",

 "aggregation_column": "produced",

 "AND_": [

 {

 "where_symbol": ">",

 "where_column" : "timestamp",

 "where_clause_term": "2020-06-25"

 },

 {

 "where_column" : "solar_plant",

 "where_clause_term": "27 Adega Palmela"

 }]

The following REST API call is used for calculating the average production per month per year for the

solar plant “27 Adega Palmela” and for dates after the “2020-06-25”. The endpoint for submitting

complex group queries to MATRYCS MongoDB follows (Table 10).

Table 10: GroupBy query REST API call for LSP5

POST /complex/group/query HTTP/1.1

Host: matrycs.epu.ntua.gr:8000

Content-Type: application/json

{

"aggregation_metric": "AVG",

"aggregation_column": "produced",

"grouping_columns": ["month", "year"],

"table": "coopernico_solar_plants",

"aggregation_metric_alias": "avg_produced",

"AND_": [

{

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

54

D4.1 | MATRYCS-PROCESSING (1st technology release)

 "where_symbol": ">",

 "where_column" : "timestamp",

 "where_clause_term": "2020-06-25"

 },

{

 "where_column" : "solar_plant",

 "where_clause_term": "27 Adega Palmela"

}]

}

The feature selection REST service is used for enabling transformations over stored data. These

transformations are controlled through REST service input and by tuning specific payload parameters.

The following REST API call is used for normalizing numerical variables (“produced”, “specific” and

“avoided_co2”), indexing the data using the timestamp field and calculating the moving average for the

“produced” field and finally to prepare the final dataset for timeseries forecasting using the field “lag”

as equal to seven (7). This means the seven previous production values to be used for the production

value prediction of the next hour. An example of the REST API call for LSP5 follows (Table 11):

Table 11: Feature selection REST API call for LSP5

POST /feature/selection HTTP/1.1

Host: matrycs.epu.ntua.gr:8000

Content-Type: application/json

{

 "table": "coopernico_solar_plants",

 "all": "true",

 "columns_to_normalize": ["produced", "specific", "avoided_co2"],

 "date_column": "timestamp",

 "window": 7,

 "columns_to_move": ["produced"],

 "AND_": [

 {

 "where_symbol": ">",

 "where_column" : "timestamp",

 "where_clause_term": "2020-06-25"

 },

 {

 "where_column" : "solar_plant",

 "where_clause_term": "27 Adega Palmela"

 }],

 "lag": 7,

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

55

D4.1 | MATRYCS-PROCESSING (1st technology release)

 "feature_columns": ["produced"]

}

8.3 Model Development / ML Suite / Models Shared

Storage

The Model Development module is connected to the Data Feed module by consuming its sub-

components’ REST API calls for receiving processed data from the Data Feed. One of the Model

Development Module’s components is a virtual machine as an AWS EC2 instance which is running a

JupyterHub service, an open source and self-hosted service. Once logged in through a GitHub account,

the user can open a Jupyter Notebook and load the data from the Data Feed Module.

Figure 29: User’s initial interaction with Module

In the example following (Table 12), the LSP1 data from the Data Feed Module is loaded into a Pandas

DataFrame.

Table 12: Loading LSP1 data from the Data Feed Module

DATA_HANDLER_URL = 'http://matrycs.epu.ntua.gr:8000/feature/selection'

feature_selection_payload = {

 "table": "btc_tower",

 "all": "true",

 "columns_to_normalize": ["value"],

 "date_column": "timestamp",

 "lag": 5,

 "feature_columns": ["value"]

}

 response=requests.post(response=requests.post (url=DATA_HANDLER_URL,

headers=headers,data=json.dumps(features_payload_))

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

56

D4.1 | MATRYCS-PROCESSING (1st technology release)

The data is then transformed into a NumPy array of a nx1 shape, which is the expected input of the

timeseries forecasting pipeline. This is shown in Table 13:

Table 13: Data Transformation for the provided pipeline

data = (df.loc[‘value’].to_numpy().reshape((-1,1)).astype(float))

After receiving the data from Data Handler’s REST Services, the pipeline for training ML/DL models

initiates by leveraging ML Suite’s libraries. Metadata from the training module are stored to Model

Development local storage and the output models are stored in Models Shared Storage for evaluation

and serving. The following figure demonstrates Model development module pipeline flow (Figure 30).

Figure 30: Handing off the data to the local storage

LSP1 data are used for training ML models for energy forecasting, in order to initiate the LSP1 training

flow it is required to execute the following command (Table 14). After training the LSP1 forecasting

model is stored to Models Shared storage having name “LSP1_forecasting_model”.

Table 14: Running the pipeline for LSP1 timeseries analysis

%run /srv/pipeline.py –task ‘timeseries_forecast’ –in_data ‘data’ –period_to_forecast 12 –out_model

’LSP1_forecasting_model’

The following table (Table 15) demonstrates the metadata produced (training and evaluation loss) after

LSP1 training.

Table 15: LSP1 training metadata

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

57

D4.1 | MATRYCS-PROCESSING (1st technology release)

8.4 Evaluation Module

The Anaconda environment is an Python environment appropriate for all ML models developed for the

LSPs in the MATRYCS project. Moreover, an SFTP server is created for straightforward integration of

trained ML models with the Evaluation module. The credentials and details of the SFTP server are shared

between involved partners.

Regarding the Anaconda environment, Jupyter notebooks are available for interactive work with datasets

and ML models. The source code, computations, comments with the explanations, and graphical content

are combined to make the Evaluation of the ML models easy to perform with high quality.

8.4.1 LSP1

The trained model for energy prediction for BTC Tower is evaluated by the Jupyter notebook instance

exposed from Anaconda environment that presents the whole flow is included into the Evaluation

module. Libraries like Requests87, JSON88, Joblib89 for lightweight pipelining, Pandas90, and NumPy91 are

installed and used in the notebook (Figure 31).

Figure 31: LSP1 Evaluation phase

87 Python Requests, https://docs.python-requests.org/
88 JSON encoder and decoder, https://docs.python.org/3/library/json.html
89 Joblib: running Python functions as pipeline jobs, https://joblib.readthedocs.io/en/latest/
90 Pandas, https://pandas.pydata.org/
91 Numpy, https://numpy.org/

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

58

D4.1 | MATRYCS-PROCESSING (1st technology release)

8.4.2 LSP5

For this LSP, the ML model for LSP5 Adega Palmela dataset was created, and was uploaded into the

dedicated SFTP folder. After that, Adega Mangualde ML model is created also. The important libraries,

like NumPy92, Pandas93, Joblib94, PyHive95, are included in the Anaconda environment and used in the

evaluation process. They enable working and managing the chosen ML models, as well as connection to

the Data Handler’s REST APIs and retrieving the data for the evaluation of the chosen model (Figure 32).

Figure 32: Evaluation of the selected ML model for LSP5

8.5 Serving Framework

BentoML is integrated with the Evaluation Framework, particularly with the Anaconda environment. In

this way, developers can create bundles of models to be served on the selected port with enabled

Swagger API. This process can be done directly in the Jupyter notebook. In the background, Yatai and

92 NumPy, https://numpy.org/
93 Pandas, https://pandas.pydata.org/
94 Joblib, https://joblib.readthedocs.io/en/latest/
95 PyHive, https://pypi.org/project/PyHive/

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

59

D4.1 | MATRYCS-PROCESSING (1st technology release)

PostgreSQL are running as Docker containers, and they are enabling the serving of the selected set of

the MATRYCS ML models.

8.5.1 LSP1

To serve models, the selected models should be imported into BentoML and saved for prediction service.

Model serving with BentoML is easily created. There are several ways in which the model serving can be

defined. In the following figure (Figure 33), one of the possible processes of including the evaluated ML

model for LSP1 into the BentoML is presented.

Figure 33: ML model to be served for LSP1

After creating the service bundle, the models then can be containerized and served in that way, or using

the command:

Table 16: Basic BentoML command to serve the ML model in production mode

bentoml serve-gunicorn BTCTower:20210707121701_5914F9 --port 3002 --

enable-swagger --yatai-url 217.172.12.158:8891

The result of this process is presented in the following figure (Figure 34).

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

60

D4.1 | MATRYCS-PROCESSING (1st technology release)

Figure 34: Swagger API to access evaluated models from LSP1 served with BentoML

The Swagger REST API that is provided (Figure 35) is intuitive to use. Served ML model is available for

the prediction service.

Figure 35: Example of prediction service used from BentoML’s Swagger REST API for LSP1

Prediction requests can also be sent using the curl command, with Python and the Requests library,

Postman etc.

8.5.2 LSP5

For the LSP5, two ML models are evaluated and because of that, the bundle of those two models is

created in order for them to be served together. The APIs which contain the serving logic can be defined

in the following way (Figure 36):

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

61

D4.1 | MATRYCS-PROCESSING (1st technology release)

Figure 36: ML models bundle to be served for LSP1

The command (Table 17) that can be issued to serve the bundled ML models is:

Table 17: Basic BentoML command to serve the bundle of ML Models in production mode

bentoml serve-gunicorn LSP5_Coopernico:20210707114815_D8887E --port 3003 -

-enable-swagger --yatai-url 217.172.12.158:8891

In contrast with the LSP1, for LSP5 there are two prediction services, for two evaluated models. The

connections to APIs are enabled through an interactive user interface (Figure 37).

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

62

D4.1 | MATRYCS-PROCESSING (1st technology release)

Figure 37: Swagger API to access evaluated models from LSP5 served with BentoML

The prediction functionalities are easily reachable via POST requests in Swagger REST API (Figure 38).

Figure 38: Example of prediction service used from BentoML’s Swagger REST API for LSP5

8.6 Connection to MATRYCS-ANALYTICS Layer

The MATRYCS-PROCESSING is the aggregation of data management and AI services where the trained

and stored models are exposed to the MATRYCS-ANALYTICS layer, through REST APIs, by using the

infrastructure of the Serving Framework. The analytics services use the trained models in the backend,

as decision support system and visualize the final results for the end users.

The MATRYCS project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement no.101000158

63

D4.1 | MATRYCS-PROCESSING (1st technology release)

9 Future activities
As the 1st technology release has been described and analysed for the MATRYCS-PROCESSING layer,

the main technologies that were used and the limitations that have arisen are well understood and

lead to the future activities for an efficient and successful 2nd technology release.

Below, the future activities for MATRYCS-PROCESSING layer are listed:

Data Feed

 Add more functionalities for data preparation (e.g, exponential smoothing)

 Continuous integration activities with all MATRYCS-PROCESSING components

 Migrate from on premises installation to cloud installation

 Data expansion by adding more datasets

 Integration with End-to-End Security Framework

Model Development Module and ML Suite

 Install more ML libraries

 Continuous integration activities for advanced connection with all MATRYCS-PROCESSING layer’s

components

 Migrate from AWS to EGI ACE cloud (once positively evaluated by EGI ACE project)

 Store more ML/DL models

 Integration with End-to-End Security Framework

Serving and Evaluation Framework

 Transfer all models to official MATRYCS-PROCESSING model shared storage

 Test more ML libraries with BentoML

 Install and test new libraries based on the different models that will be developed during the

project’s ML development phase

 Integration with End-to-End Security Framework

 Migrate from on premises installation to cloud installation

The 2nd technology release of the MATRYCS-PROCESSING layer will be described in detail in D4.2 -

MATRYCS-PROCESSING (2nd technology release) (M22).

	1 Introduction
	1.1 Purpose of this document
	1.2 Structure of the document

	2 MATRYCS-PROCESSING Architecture
	2.1 MATRYCS-PROCESSING Definition
	2.2 MATRYCS-PROCESSING Layer Components
	2.3 Connection with Big Data and IoT Reference Architecture
	2.4 Connection with MATRYCS-GOVERNANCE Layer
	2.5 Connection with MATRYCS-ANALYTICS Layer

	3 Data Feed Module
	3.1 High-Level Architecture of Data Feed Module
	3.2 Migration from ScyllaDB to MongoDB
	3.3 Data Feed Model Deployment Approach

	4 Machine Learning Suite
	5 Model Development Module
	6 Model Serving Module
	6.1 Model Serving Architecture
	6.2 Model Serving technological components
	6.3 Serving framework deployment approach

	7 Evaluation Framework
	7.1 Evaluation framework Architecture
	7.2 Evaluation framework technological components
	7.3 Evaluation framework deployment approach

	8 MATRYCS-PROCESSING Integration on M11
	8.1 Connection with MATRYCS-GOVERNANCE Layer
	8.2 Data Feed Module
	8.2.1 LSP1
	8.2.2 LSP5

	8.3 Model Development / ML Suite / Models Shared Storage
	8.4 Evaluation Module
	8.4.1 LSP1
	8.4.2 LSP5

	8.5 Serving Framework
	8.5.1 LSP1
	8.5.2 LSP5

	8.6 Connection to MATRYCS-ANALYTICS Layer

	9 Future activities

